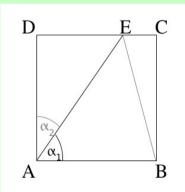
Trigonometrie 2

1. Das Viereck ABCD ist ein Quadrat.


Es gilt:

$$\overline{AE} = 8 \text{ cm}$$

$$\alpha_1 = 57^{\circ}$$

Berechnen Sie die Länge BE!

$$\alpha_2$$
 =33,0°; \overline{AD} = \overline{CD} = \overline{BC} =6,71 cm; \overline{DE} =4,36 cm; \overline{CE} =2,35 cm; \overline{BE} =7,11 cm

2. Auf der Geraden AD liegen die Dreiecke ABC und BDE.

Es gilt:

$$\overline{AB} = 5.4 \text{ cm}$$

$$\alpha = 48^{\circ}$$

$$\overline{BE} = 10.3 \text{ cm}$$

$$\delta = 74^{\circ}$$

Berechnen Sie die Länge CE!

CF=3,00 cm; BG=2,84 cm; EG=9,90 cm; EH=6,90 cm; CH=5,54 cm; CE=8,85 cm

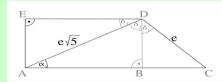
3. Für die quadratische Pyramide gilt:

$$\overline{AB}$$
 = 5,6 cm

$$\beta = 65^{\circ}$$

$$\overline{AE} = \overline{BF} = 3.0 \text{ cm}$$

Berechnen Sie die Länge $\overline{\mathsf{GF}}$ sowie


den Flächeninhalt des Vierecks BCGF.

$$\overline{SB}$$
=6,63 cm; \overline{SF} =3,63 cm; σ =50°; \overline{GF} =2,78 cm; \overline{SH} =6,01 cm; A_{BCS} =16,83 cm²; \overline{SG} =2,33 cm; A_{FGS} =3,24 cm²; A_{BCGF} =13,59 cm²

4. Gegeben ist ein rechtwinkliges Trapez.

Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt: $\tan \alpha_1 = \frac{1}{3}$

$$\delta_1 = 45^\circ; \overline{DB} = \frac{1}{2}e\sqrt{2}; \overline{AB} = \frac{3}{2}e\sqrt{2}$$